Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2013 Oct; 51(10): 840-848
Artigo em Inglês | IMSEAR | ID: sea-149390

RESUMO

Phosphorus is one of the key factors that regulate soil fertility. Its deficiencies in soil are largely replenished by chemical fertilizers. The present study was aimed to isolate efficient phosphate solubilizing fungal strains from Eisenia fetida vermicompost. Out of total 30 fungal strains the most efficient phosphate solubilizing one was Emericella (Aspergillus) nidulans V1 (MTCC 11044), identified by custom sequencing of β-tubulin gene and BLAST analysis. This strain solubilized 13 to 36% phosphate from four different rock phosphates. After three days of incubation of isolated culture with black Mussorie phosphate rock, the highest percentage of phosphate solubilization was 35.5±1.01 with a pH drop of 4.2±0.09. Kinetics of solubilization and acid production showed a linear relationship until day five of incubation. Interestingly, from zero to tenth day of incubation, solubility of soil phosphate increased gradually from 4.31±1.57 to 13.65±1.82 (mg kg-1) recording a maximum of 21.23±0.54 on day 45 in respect of the V1 isolate. Further, enhanced phosphorus uptake by Phaseolus plants with significant pod yield due to soil inoculation of Emericella nidulans V1 (MTCC 11044), demonstrated its prospect as an effective biofertilizer for plant growth.


Assuntos
Animais , Biodegradação Ambiental , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Emericella/isolamento & purificação , Emericella/metabolismo , Fertilizantes , Oligoquetos/classificação , Oligoquetos/microbiologia , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Fosfatos/metabolismo , Fosfatos/farmacocinética , Fosfatos/farmacologia , Filogenia , Solo/química , Microbiologia do Solo , Solubilidade
2.
Artigo em Inglês | IMSEAR | ID: sea-136323

RESUMO

Background & objectives: Adherence of bacteria to epithelial cells and mucosal surfaces is a key criterion for selection of probiotic. We assessed the adhesion property of selected indigenous probiotic Lactobacillus strains based on their hydrophobicity and ability to adhere to human epithelial cells. Methods: Five human faecal Lactobacillus isolates, one from buffalo milk and one from cheese were assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to Caco2 and HT-29 colonic adenocarcinomal human intestinal epithelial cell lines. Lactobacillus strains that adhered to Caco2 and HT-29 cell lines were quantified by plating after trypsinization and simultaneously the adhered bacteria were also examined microscopically after staining with Geimsa stain and counted in different fields. Results: Among the tested faecal isolates, L. plantarum Lp91 showed maximum percentage hydrophobicity (35.73±0.40 for n-hexadecane and 34.26±0.63 for toluene) closely followed by L. plantarum Lp9 (35.53±0.29 for n-hexadecane and 33.00±0.57 for toluene). Based on direct adhesion to epithelial cells, L. plantarum Lp91 was the most adhesive strain to HT-29 and Caco2 cell lines with per cent adhesion values of 12.8 ± 1.56 and 10.2 ± 1.09, respectively. L. delbrukeii CH4, was the least adhesive with corresponding figures of 2.5 ± 0.37 and 2.6 ± 0.20 per cent on HT-29 and Caco2 cell lines. Adhesion of the six isolated Lactobacillus strain to HT-29 cell and Caco2 lines as recorded under microscope varied between 131.0 ± 13.9 (Lp75) to 342.7 ± 50.52 (Lp91) and 44.7 ± 9.29 (CH4) to 315.7± 35.4 (Lp91), respectively. Interpretation & conclusions: Two Indigenous probiotic Lactobacillus strains (Lp9, Lp91) demonstrated their ability to adhere to epithelial cell and exhibited strong hydrophobicity under in vitro conditions, and thus could have better prospects to colonize the gut with extended transit.


Assuntos
Aderência Bacteriana , Células CACO-2 , Colo/citologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Células HT29 , Humanos , Hidrocarbonetos/química , Interações Hidrofóbicas e Hidrofílicas , Intestinos/citologia , Lactobacillus plantarum/química , Lactobacillus plantarum/isolamento & purificação , Probióticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA